中华人民共和国行业标准

内河航道绿色建设技术指南

JTS／T 225－2021

主编单位：交通运输部天津水运工程科学研究所
批准部门：中华人民共和国交通运输部
施行日期：2021年6月1日

交通运输部关于发布《内河航道绿色建设技术指南》的公告

2021 年第 22 号

现发布《内河航道绿色建设技术指南》（以下简称《指南》）：《指南》为水运工程建设推荐性行业标准，标准代码为 JTS／T 225－2021，自2021年6月1日起施行。

《指南》由交通运输部水运局负责管理和解释，实施过程中具体使用问题的咨询，由主编单位交通运输部天津水运工程科学研究所答复。《指南》文本可在交通运输部政府网站水路运输建设综合管理信息系统＂水运工程行业标准＂专栏（ mwwis．mot．gov．cn／syportal／ sylz）查询和下载；

特此公告。

制 定 说 明

目前在长江干线，西江航运干线和京杭运河等主要内河航道工程建设中，进行了大量航道绿色建设工程实践，为进一步指导和规范内河航道绿色建设设计，施工，结合国内外近年来航道绿色建设的理论研究和实践经验，交通运输部水运局组织交通运输部天津水运工程科学研究所等单位，分析总结国内外航道绿色建设等方面的技术成果，深人调查研究，广泛征求意见，反复修改完善，制定了《内河航道绿色建设技术指南》。

本指南共分 8 章 1 个附录，并附条文说明，主要包括工程布置，护岸，护滩，护底工程，筑坝工程，疏浚工程和清礁工程等

本指南主编单位为交通运输部天津水运工程科学研究所，参编单位为交通运输部水运科学研究所，长江航道局，长江航道规划设计研究院，中交第二航务工程勘察设计院有限公司，中交水运规划设计院有限公司，中国科学院水生生物研究所，河海大学，南京水利科学研究院，广东省交通运输规划研究中心，华设设计集团股份有限公司，中国水利水电科学研究院，主要编写人员分工如下：

1 总则：张华庆 马殿光
2 术语：马殿光 张 玮 李晋鹏
3 基本规定：戴明新 李华国 何传金 蔡庆华 李晋鹏 窦 鹏
4 工程布置：马殿光 雷国平 曹民雄
5 护岸，护滩，护底工程：柴华峰 王仙美 邢 岩
6 筑坝工程：刘赛龙 罗少林
7 疏浚工程：叶志伟 董朝明 东培华
8 清礁工程：谢凌峰 刘 林
附录 A ：马殿光 邢 岩
本指南于 2020 年 12 月 17 日通过部审， 2021 年 3 月 22 日发布，自2021年 6 月 1 日起施行。

本指南由交通运输部水运局负责管理和解释，各单位在执行过程发现的问题和意见，请及时函告交通运输部水运局（地址：北京市建国门内大街 11 号，交通运输部水运局技术管理处，邮政编码：100736）和本指南管理组（地址：天津市滨海新区塘沽新港二号路 2618 号，交通运输部天津水运工程科学研究所，邮政编码：300456），以便修订时参考：

目 次

1 总则 （1）
2 术语 （2）
3 基本规定 （3）
3.1 一般规定 （3）
3.2 施工要求 （3）
4 工程布置 （4）
4．1 一般规定 （4）
4.2 平面布置 （4）
5 护岸，护滩，护底工程 （5）
5.1 一般规定 （5）
5.2 材料 （5）
5.3 结构 （5）
6 筑坝工程 （6）
6.1 一般规定 （6）
6.2 材料 （6）
6.3 结构 （6）
7 疏浚工程 （7）
7.1 一般规定 （7）
7.2 设备与工艺 （7）
7.3 疏浚土利用与处置 （7）
8 清礁工程 （8）
8.1 一般规定 （8）
8.2 设备与工艺 （8）
8.3 弃渣利用与处置 （8）
附录 \mathbf{A} 本指南用词说明 （9）
附加说明 本指南主编单位，参编单位，主要起草人，主要审查人，总校人员 和管理组人员名单 （10）
条文说明 （13）

1 总 则

1．0．1 为规范和指导内河航道工程绿色建设的设计和施工，制定本指南：

1．0．2 本指南适用于河流，湖泊，水库和运河等新建，改建，扩建内河航道工程的绿色建设，工程内容主要包括护岸，护滩，护底，筑坝，疏浚，清礁等
1．0．3 内河航道工程绿色建设除应符合本指南外，尚应符合国家现行有关标准的规定：

2 术 语

2．0．1 生态型结构 Ecological Structure
运用生态学原理与航道整治技术，以达到维持或提高航道等级，改善通航条件，保护岸滩，改善局部水生态环境等目的所设计或建造的结构物。

2．0．2 鱼巢砖 Fish Nest Brick

为改善河流生态，营造生物栖息的良好环境，在河流中人为设置的，便于鱼类产卵，孵化的空腔结构体。

3 基 本 规 定

3.1 －般规定

3．1．1 航道工程建设应贯彻生态环境保护的有关要求，采取绿色建设的技术和措施，
3．1．2 航道工程设计阶段宜根据环境影响评价的要求对工程区生态结构实施区域开展补充性生态环境调查，并提出工程河段绿色建设要求。
3．1．3 航道工程平面布置应统筹考虑航道整治效果和生物栖息地保护。
3．1．4 航道工程宜保持河流纵向连通，水岸横向交换和垂向透水，
3．1．5 航道工程绿色建设应优先选用本土植物，
3．1．6 航道工程施工宜选用环保设备和工艺。
3．1．7 水上施工工期安排应减少对鱼类产卵和洄游的影响：

3.2 施工要求

3．2．1 施工设备宜选用对水体扰动小，噪声低，排放少的环保设备，
3．2．2 施工前应依据生态环境保护要求对施工区及其邻近水域进行驱鱼作业：
3．2．3 陆域施工不应随意砍伐工程附近区域的树木或破坏植被，宜控制临时占地面积，并及时修复：
3．2．4 施工期应加强生态环境保护的宣传和管理力度，在珍稀水生生物集中分布的洲滩应设置宣传牌和船只禁吗标识牌。
3．2．5 开工前应做好珍稀水生动物误伤的应急预案，

4 工 程 布 置

4.1 —般规 定

4．1．1 航道工程布置应减缓对环境敏感区的不利影响：
4．1．2 航道工程布置应充分考虑河段的航道畅通，水生态环境保护等需要，旅游航道还应考虑生态景观的要求：

4．1．3 新开运河航道应营造良好河流生态环境。

4.2 平面布置

4．2．1 护岸，护滩，护底，筑坝，疏浚，清礁等航道工程平面布置应根据其功能和生态环境保护要求进行设计。

4．2．2 护岸工程布置应符合下列规定。

4．2．2．1 护岸工程宜随坡就势，保持平顺；

4．2．2．2 护岸工程应根据工程河段水流，水位等特征进行分区并采取不同类型的防护措施，
4．2．2．3 岸坡防护可采用直接防护或间接防护的方式：间接防护方式可采用平行自然岸坡布置的顺坝或板桩等
4．2．3 护滩，护底工程可采用软体排。在满足护滩，护底建筑物稳定的条件下，压排石宜采用条状间断布置方式，

4．2．4 筑坝工程布置应符合下列要求

4．2．4．1 坝体布置不宜阻隔大型水生动物的洄游通道。
4．2．4．2 接岸筑坝工程可将坝体布置为勾头型，可在坝体适宜部位预留缺口或设置成透水坝体
4．2．4．3 分汉河段宜保留非通航汉道连通性，可采用鱼骨坝或其他新型坝体结构等调整汉道分流比，
4．2．5 抛泥区，储泥坑，弃渣区选址应避开环境敏感区。

5 护岸，护滩，护底工程

5.1 －般规 定

5．1．1 在满足航道整治效果，整治建筑物稳定耐久的前提下，护岸，护滩，护底建筑物宜选用生态材料和生态型结构；
5．1．2 护岸的结构形式应结合河道特性，水面宽度，两岸植被和景观状况综合选取，宜选用生态型，亲水型结构，并与周边城镇，环境和景观相融合。
5．1．3 护岸宜以斜坡式护岸为主，土地资源紧缺或征地拆迁困难河段的护岸，可采用直立式或混合式护岸；
5．1．4 护岸的陆上部分应结合生态和景观要求，选用适宜植物生长的结构；对于斜坡式护岸，宜在水位变动区以上种植植物；对于直立式或混合式护岸，宜在常水位以上种植植物。
5.1 .5 护岸，护滩，护底的水下部分可采用能营造多样化生境的小型构筑物，抛石等。

5．1．6 对出露时间较长的滩地，可选用适宜湿生或陆生植物生长的护滩结构；对淹没时间较长的滩地，可选用适宜水生生物生境的透空型护滩结构；

5.2 材 料

5．2．1 护岸，护滩，护底工程应根据经济，环境，耐久性和工程属性等因素，可采用天然生态材料或人工生态材料：
5．2．2 护岸，护滩，护底工程宜采用孔隙率高，透水性好，适宜生物栖息和植物生长的生态材料
5．2．3 护岸材料不应对本土物种产生不利影响：

5.3 结 构

5．3．1 护岸，护滩，护底应采用具有较好透水性，有利于物质交换，适宜生物栖息的结构。
5．3．2 旅游航道的护岸，护滩结构宜与周边环境相融合；
5．3．3 水动力较弱区域的护岸，宜采用水生植物护岸为主；水动力较强区域的护岸，宜采用透水性较好的抗冲结构为主。
5．3．4 护岸的水上护坡宜采用钢丝网石笼，生态护坡砖，三维加筋网垫等生态型结构：护脚可结合需求设置鱼巢砖：
5．3．5 护滩宜采用透水框架，块石网箱，促淤网垫，三维加筋网垫，蜂格网，可降解的草绳网，麻绳网等生态型结构。
5．3．6 护底宜采用钢丝网石兜，抛石，抛沙枕，小型预制构件，扭王字块，抛碎石袋等生态型结构，

6 筑 坝 工 程

6.1 －般规定

6．1．1 筑坝工程宜在满足整治功能的前提下采用具有生境改善功能的布置方案和结构，
6．1．2 坝体宜选用具有较好透水性，适宜生物栖息及繁殖的结构；

6.2 材 料

6．2．1 筑坝材料宜就地取材，充分利用无污染清渣材料等
6．2．2 筑坝材料宜采用透水性好，适宜生物栖息和植物生长的生态材料，
6．2．3 筑坝工程根据经济，环境，耐久性和工程属性等因素，可采用天然生态材料或人工生态材料
6．2．4 筑坝材料不应对本土物种产生不利影响

6.3 结 构

6．3．1 坝体可采用多样化的断面形态或在背水坡布置带孔洞的整治结构，
6．3．2 长顺坝结构可选择在不影响整治效果和坝体稳定的位置开口或开孔，
6．3．3 坝体需要设置护面层时，护面宜选用具有生态功能的预制块体，钢丝网格或预制装配式等结构，
6．3．4 对坝体顶面出露时间较长的坝体结构，坝面宜采用生态效果较好的带孔陌或孔洞的生态混凝土结构，钢丝类透水结构等，

7 疏 浚 工 程

7.1 —般规 定

7．1．1 䟽浚设计应考虑生态要求，减少对施工水域底栖生物等的影响：
7．1．2 无污染的䟽浚土在水域直接抛投时，宜选择水深条件良好区域作为扡泥区，应避开生态红线管控范围，自然保护地，水生生物重要栖息地水域；抛泥区的设置应当经科学论证，并依法办理相关手续

7.2 设备与工艺

7．2．1 疏浚施工宜采用环保设备。
7．2．2 疏浚施工应控制好施工精度，并减少对水下土体扰动。
7．2．3 疏浚施工应根据船艊，水流条件和环境影响等安排施工顺序：

7.3 疏浚土利用与处置

7．3．1 疏浚土宜综合利用，可用于陆域回填，生态固滩，沙枕充填，人工岛建设，湿地建设或混疑土人工块体等构件的材料。
7．3．2 无法综合利用的疏浚土应抛至指定区域，
7．3．3 被污染疏浚土应按照建设项目环境影响评价报告及批复的相关要求进行处置

8 清礁工程

8.1 —般规 定

8．1．1 清礁工程应综合考虑工程河段生态现状，生态影响，生态涵养，生态修复等因素进行设计。
8．1．2 清礁工程应根据基岩的岩性和强度，对水生生物的影响等综合选取施工工艺，
8．1．3 清礁工程宜采用非爆破清礁方式，必要时可采用爆破清礁方式，

8.2 设备与工艺

8．2．1 非爆破清礁宜采用绞吸式，铲斗式，反铲斗式，抓斗式等挖泥船舶。
8．2．2 对于礁岩强度相对较低的砂岩，泥岩，其他全风化或强风化岩等，水深条件允许时宜采用大型纹吸式挖泥，大功率铲斗等清礁船舶，
8．2．3 爆破清礁应采用钻孔爆破法，宜采用微差爆破，预裂爆破或定向控制爆破等爆破方式：
8．2．4 钻孔爆破宜采用低爆力，低爆速炸药，限制一次起爆的单段最大炸药量，气泡帷幕，覆盖等降低冲击波影响的措施：

8.3 弃渣利用与处置

8．3．1 弃椬宜综合利用，可用于整治工程或营造生态涵养区；无利用条件时应抛置在指定区域或上岸处置
8．3．2 清礁工程弃渣处置应满足下列要求。
（1）不影响饮用水水源保护区和其他取水口；
（2）减少对自然保护区及其主要保护对象的不利影响；
（3）減少对工程河段鱼类＂三场一通道＂的不利影响；
（4）陆上弃渣场覆盖种植土复绿。

附录 A 本指南用词说明

为便于在执行本指南条文时区别对待，对要求严格程度的用词说明如下：
（1）表示很严格，非这样做不可的，正面词采用＂必须＂，反面词采用＂严禁＂；
（2）表示严格，在正常情况下均应这样做的，正面词采用＂应＂，反面词采用＂不应＂或 ＂不得＂；
（3）表示允许稍有选择，在条件许可时首先应这样做的，正面词采用＂宜＂，反面词采用＂不宜＂；
（4）表示允许选择，在一定条件下可以这样做的采用＂可＂。

附加说明

本指南主编单位，参编单位，主要起草人，主要审查人，总校人员和管理组人员名单

主 编 单 位：交通运输部天津水运工程科学研究所参 编 单 位：交通运输部水运科学研究所

长江航道局
长江航道规划设计研究院
中交第二航务工程勘察设计院有限公司
中交水运规划设计院有限公司
中国科学院水生生物研究所
河海大学
南京水利科学研究院
广东省交通运输规划研究中心
华设设计集团股份有限公司
中国水利水电科学研究院
主要起草人：马殿光（交通运输部天津水运工程科学研究所）
张华庆（交通运输部天津水运工程科学研究所）
戴明新（交通运输部天津水运工程科学研究所）
（以下按姓氏笔画为序）
于广年（交通运输部天津水运工程科学研究所）
王仙美（华设设计集团股份有限公司）
东培华（华设设计集团股份有限公司）
叶志伟（长江航道局）
那 岩（交通运输部天津水运工程科学研究所）
刘 林（中交水运规划设计院有限公司）
刘 新（交通运输部天津水运工程科学研究所）
刘赛龙（中交第二航务工程勘察设计院有限公司）
李华国（交通运输部天津水运工程科学研究所）
李晋鹏（交通运输部水运科学研究所）
何小泷（交通运输部天津水运工程科学研究所）

何传金（长江航道局）
张 玮（河海大学）
罗少林（中交第二航务工程勘察设计院有限公司）
柴华峰（长江航道规划设计研究院）
曹民雄（南京水利科学研究院）
董朝明（长江南京航道工程局）
谢凌峰（广东省交通运输规划研究中心）
雷国平（长江航道规划设计研究院）
寞 鹏（中国水利水电科学研究院）
蔡庆华（中国科学院水生生物研究所）
主要审査人：解曼莹
（以下按姓氏笔画为序）
王平义，杨明远，吴丙贵，邹 红，陈 卉，罗 春，程巍华，廖 鹏
总校人员：刘国辉，谢 燕，间 军，李华国，马殿光，李荣庆，曹凤帅，董 方，檀会春，谢凌峰，柴华峰，于广年，李晋鹏，江朝华，雷国平，罗少林，董朝明，杨顺益，徐俊锋，何小泷
管理组人员：冯小香（交通运输部天津水运工程科学研究所）
马殿光（交通运输部天津水运工程科学研究所）
邢 岩（交通运输部天津水运工程科学研究所）

中华人民共和国行业标准

内河航道绿色建设技术指南

JTS／T 225－2021

条文说明

目 次

1 总则 （17）
3 基本规定 （18）
3.1 一般规定 （18）
4 工程布置 （19）
4.1 一般规定 （19）
4.2 平面布置 （19）
5 护岸，护滩，护底工程 （20）
5.2 材料 （20）
5.3 结构 （20）
6 筑坝工程 （21）
6.1 一般规定 （21）
6.2 材料 （21）
6.3 结构 （21）
8 清礁工程 （22）
8.2 设备与工艺 （22）
8.3 弃椬利用与处置 （22）

1 总 则

1．0．1 本指南针对内河航道工程建设项目的可行性研究，初步设计，施工图设计，工程实施环节的绿色建设技术要求进行规定：
1．0．2 本指南绿色建设技术规定涵盖河流，湖泊，水库内的航道以及运河和通航渠道等内陆可通航水域所进行的护岸，护滩，护底工程，筑坝工程，疏浚工程和清礁工程等内容。

3 基 本 规 定

3.1 —般规定

3．1．3 河流滩地因其相对较浅的水域环境，具有适宜的光照和水温条件是水生生物重要的栖息生境，中枯水情况下所进行的航道整治工程，将水流主要限制在通航主槽之内，形成形态窄深，流态单一适宜通航的航道。统筹考虑是利用整治工程对边滩的水生生物栖息地进行保护，既能满足通航要求，又能对重要生物栖息地进行有效保护。
3．1．4 河流纵向连通主要是避免采用锁坝阻塞河流支汉，保持一定过流量，

4 工 程 布 置

4.1 —般规 定

4．1．1 根据生态环境部发布的《建设项目环境影响评价分类管理名录（2021年版）》，环境敏感区包括国家公园，自然保护区，风景名胜区，世界文化和自然遗产地，海洋特别保护区，饮用水水源保护区等生态红线管控范围，还包括永久基本农田，基本草原，自然公园 （森林公园，地质公园，海洋公园等），重要湿地，天然林，重点保护野生动物栖息地，重点保护野生植物生长繁殖地，重要水生生物的自然产卵场，索铒场，越冬场和洄游通道，天然渔场，水土流失重点预防区和重点治理区，沙化土地封禁保护区，封闭及半封闭海域：

4.2 平面布置

4．2．3 条状间断布置有利于河床促淤，河流生态修复。
4．2．4 在美国密西西比河和密苏里河常用的 U 形或V形坝体是常见的新型坝体结构，具有生态效应。坝体所遮蔽区域水草茂盛且有大量鱼类聚集，将其布置在洲头上游，既能调整分流比，改善通航，又能在河道中为水生生物营造栖息空间（图4．1），该整治建筑物具有以下特性：（1）坝后形成半封闭的静水区域，构造出急流－缓流交替的多样化流场，为生物栖息提供庇护场地；（2）洪水季水流漫过坝体，在坝体下游形成局部冲坑，水深相对较深，能够为鱼类提供越冬场所；（3）冲坑下游淤积形成浅滩，水深相对较浅，光照充足，是适宜水生生物栖息的良好生境。U形或V形坝通常单个或多个连续布置在汉道一侧，坝体封闭端顶水布置，坝顶高出常水位并设置航行警示标志；

图4．1 ！形生态坝群布置示意图

5 护岸，护滩，护底工程

5.2 材 料

5．2．1 生态材料是无污染的，适宜生物栖息或植物生长的人工材料或天然材料；护岸，护滩，护底工程天然生态材料主要为植物，块石，砂等，人工生态材料主要包括生态混凝土，钢丝网类，生态袋，可降解人工材料等

5.3 结 构

5．3．3 水动力较弱的护岸区域一般指近岸流速较小，波浪较小的水域，

6 筑 坝 工 程

6.1 —般规定

6．1．1 改变坝体平面布置方式和位置会产生多样化的流态和冲淤地形，形成不同生境：如U形坝，V 形坝在河道中会产生多样化的流态和冲淤地形，进而产生不同的生态效果；

6.2 材 料

6．2．3 筑坝工程天然生态材料主要为植物，块石，砂等，人工生态材料主要为生态混凝土，钢丝网类，土工格栅类等；

6.3 结 构

6．3．1 通过在坝体背水坡设置鱼巢砖，人工块体或大块石等结构形成粗糙多孔的人工鱼巢，以改善水流流态，营造适宜水生生物栖息的生境条件。
6．3．2 带缺口或孔洞的坝体为鱼类提供洄游通道，同时改变了水流流态和坝田区的冲淤形态，有利于形成多样化的水生生物群落，

8 清 礁 工 程

8.2 设备与工艺

8．2．2 大型绞吸式挖泥船对不同岩性岩礁的适应性较强，主要是受航道通航条件的限制，广州港深水航道工程莲花山东航道部分清礁采用大型绞吸式挖泥船施工，工程效果较好。

8.3 弃渣利用与处置

8．3．1 弃椬的综合利用是最佳选择，有一定强度的块石石椬是岸坡护脚和人工鱼礁布置的可选材料，也是平顺岸线和平整岸坡的回填材料

